
 

AIAA JOURNAL, 

 

Vol. 34, No. 8, 
August 1996, pp. 1678 - 1685

 

Log Number: J22608

 

Estimation of Reciprocal Residual Flexibility from 
Experimental Modal Data

 

Scott W. Doebling

 

*

 

Los Alamos National Laboratory, Los Alamos, NM, 87545

 

Lee D. Peterson

 

†

 

University of Colorado, Boulder, CO, 80309-0429

 

Kenneth F. Alvin

 

‡

 

Sandia National Laboratories, Albuquerque, NM, 87185-0439

 

Abstract

 

A technique is presented for estimating the residual flexibility between non-excited

structural degrees of freedom from experimental structural vibration data. Using this meth-

od, the residual flexibility estimated from modal measurements can be included in the com-

putation of measured flexibility for experiments with incomplete reciprocity, i.e. when the

response and excitation measurement sensors are not fully collocated. The method can also

be used to estimate the unknown entries in the residual flexibility matrix for experimental

component mode synthesis when excitations are not provided at all interface degrees of

freedom. A general solution is presented which contains an unknown positive semidefinite

contribution. The general solution satisfies modal orthogonality in the limit that all of the

structural degrees of freedom are instrumented and when the positive semidefinite contri-

bution lies in a nullspace defined by the stiffness matrix and the modal flexibility. With a
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limited number of measurements, modal orthogonality is shown to be satisfied to the extent

that the measured modes are preserved by static condensation. A rank-deficient solution is

presented which allows the residual to be used in the computation of the flexibility matrix

without further modeling assumptions. Numerical and experimental results are presented

which demonstrate the application of the method to both flexibility matrix convergence and

to experimental component mode synthesis.

 

Nomenclature

 

Flexibility matrix

Residual flexibility matrix

Frequency response function matrix

Statically condensed stiffness matrix

Residual mass

Mass and stiffness matrices

Generalized coordinate basis

Arbitrary orthonormal transformation

Generalized displacement vector

Mode shape matrix

Modal eigenvalue matrix (diag{ })

Circular modal frequency

 

Subscripts (Instrumentation Degrees of Freedom)

 

Instrumented degrees of freedom which are driving points

G[ ]

Gr[ ]

H ω( )[ ]

K[ ]

Mr[ ]

M[ ] K[ ],

q{ }

T[ ]

x{ }

Φ[ ]

Λ[ ] ω2

ω

d
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(excitation and response)

Instrumented (“measured”) degrees of freedom

Non-instrumented (“omitted”) degrees of freedom

Instrumented degrees of freedom which are not driving points
(response only)

 

Subscripts (Modal Degrees of Freedom)

 

Measured modal set

Residual modal set

 

Superscripts (Solution Methods)

 

Rank-deficient solution

 

Introduction

 

Modeling the dynamic behavior of structures is accomplished using both analytical and

experimental techniques. In many methods, the measured data from a vibration experiment

is used to refine or modify a finite element model (FEM) so that the model more closely

predicts the observed dynamics of the structure.

 

1,2,3

 

 These techniques have also been ap-

plied to the problem of structural damage detection by using the measured modes of the

damaged structure in the update so that the resulting model reflects the changes in the struc-

tural properties. However, the use of individual measured modes in the update produces

some difficulties, such as the selection of which measured modes to use.

 

4

 

 For this reason,

and because of other difficulties inherent in dynamic FEM update, the flexibility matrix is

gaining use as a tool for modeling structures based on experimental data.

The structural flexibility matrix can be estimated using only the measured mode shapes

and measured modal frequencies. In the limit that all structural modes are measured, the

m

o

s

n

r

o
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measured flexibility matrix asymptotically approaches the inverse of the structural stiffness

matrix; i.e. the flexibility matrix is the static structural response to an applied static load

vector. It is this property of the flexibility matrix which makes it a useful and intuitive tool

for damage detection and model update. Recently, the measured flexibility matrix has been

used for damage detection in bridges

 

5,6,7

 

 and aircraft skin.

 

6,8

 

Previous approaches to the measurement of the flexibility matrix have focused only on

the contributions of the identified vibration modes, the so-called “modal flexibility.” How-

ever, the structural modes not in the identified modal set, the “residual modes,” also con-

tribute to the flexibility of the structure. This contribution is called “residual flexibility,”

and it can be estimated in conjunction with the measured modes from the measured fre-

quency response functions (FRF). The difficulty involved in using the residual flexibility

is that it can only be computed between the test excitation degrees of freedom (DOF) and

the test response DOF, so it has dimension . The modal flexibility, on the other

hand, is defined between each pair of response DOF (i.e. it is “fully reciprocal”) so that it

has dimension . Thus, the residual and modal flexibility matrices cannot be added

together since their dimensions are incompatible.

However, if the unmeasured partition of the residual flexibility matrix can be estimated,

the accuracy of the measured flexibility matrix can be improved. Generally, the contribu-

tion of the residual flexibility is only about 3% - 10% of the modal flexibility, but for ap-

plications such as model refinement and damage detection, this level of improved accuracy

can be very important. For example, Toksoy and Aktan

 

5

 

 state that the modal flexibility for

their particular experiment is about 90% of the total flexibility. Inclusion of the estimated

residual contribution for this experiment could make such results even more accurate.

m d×( )

m m×( )
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An important application of measured flexibility which requires measurement of the re-

sidual flexibility is experimental component mode synthesis (CMS). This is a modeling

technique which combines substructure models together in the form of the measured modes

and the measured residual flexibility matrix. Key references in the development of experi-

mental CMS are MacNeal

 

9

 

, Rubin

 

10

 

, Craig and Chang

 

11

 

, and Martinez, et al.

 

12

 

 This meth-

od has been applied to test structures to model fixed-base dynamic behavior using free-free

modal test results.

 

13,14

 

 In the basic implementation, an excitation input is required at each

interface DOF (the locations where the substructures are to be joined together). The method

developed in this paper alleviates this strict input placement technique, so that excitation

inputs would only be required at a subset of the interface DOF.

In this paper, a method is presented for estimating the fully reciprocal residual flexibil-

ity matrix using only the measured partition of the residual flexibility. A rank-deficient par-

ticular solution is proposed which uses only the measured data and requires no further

modeling assumptions or FEM. This rank-deficient solution is applied to continuous ana-

lytical beam models and to experimental data from a cantilevered beam structure to dem-

onstrate improvements in accuracy for both dynamically measured flexibility and

experimental CMS. 

The remainder of this paper is organized as follows: First, the general inverse vibration

problem is presented, which includes a derivation of the relationship between the structural

stiffness matrix, the structural flexibility matrix, and the measured modes. This section also

defines the measured degrees of freedom, and partitions the full flexibility matrix accord-

ingly. Second, the technique for estimating the non-reciprocal residual flexibility matrix

partition from the measured FRF data is presented. Next, the general solution for the un-
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measured partition of the flexibility matrix is presented. The satisfaction of the modal or-

thogonality condition by this solution is demonstrated next, and then the rank-deficient

solution is derived. Finally, the numerical and experimental applications are presented.

 

Computing Flexibility Using Inverse Vibration

 

Suppose that the undamped free vibration of a structural dynamic system is described

by the  second-order differential equation

 

(1)

 

The eigensolution of this system consists of the eigenvalue matrix , which is a diagonal

matrix of the squared natural frequencies, , and the eigenvector matrix ,

which is mass-normalized such that

 

(2)

 

Solving the first equation in Eq. (2) for the stiffness matrix yields

 

(3)

 

The flexibility is defined as the inverse of the stiffness matrix. However, when the structure

has one or more rigid body modes,  is rank deficient. In this case,  is defined as the

“Moore-Penrose pseudoinverse” 

 

15

 

 of 

 

(4)

 

and  is defined to contain only the flexible modes of the system.

Next, the flexibility matrix is separated into a modal component and a residual compo-

nent, to represent the case when only a subset of the structural vibration modes are mea-

sured. Defining the measured modal set as  and the unmeasured (residual) set as

N N×( )

M[ ] ẋ̇{ } K[ ] x{ }+ 0=

Λ[ ]

diag ωk
2{ } Φ[ ]

Φ[ ] T K[ ] Φ[ ] Λ[ ]=

Φ[ ] T M[ ] Φ[ ] I[ ]=

K[ ] Φ[ ] T– Λ[ ] Φ[ ] 1– Φ[ ] Λ[ ] 1– Φ[ ] T( ) 1–= =

K[ ] G[ ]

K[ ]

G[ ] K[ ] +≡ Φ[ ] Λ[ ] 1– Φ[ ] T=

Λ[ ]

qn{ }
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, the eigensolution can be partitioned as

 

(5)

 

Substituting Eq. (5) into Eq. (4) yields

 

(6)

 

where  is the modal flexibility, formed from the measured modes and frequencies as

 

(7)

 

and  is the residual flexibility, formed from the residual modes and frequencies as

 

(8)

 

In practice, the measured flexibility matrix is not computed for the full DOF set, be-

cause only a limited number of measurements are available. Partitioning the full DOF set

 into the instrumented DOF, , and the non-instrumented (omitted) DOF, 

yields

 

(9)

 

Further partitioning the modal vectors of Eq. (5) yields the modally and spatially parti-

tioned mode shape matrix

qr{ }

Φ Φn Φr
=

Λ
Λn 0

0 Λr

=

G[ ] Φ[ ] Λ[ ] 1– Φ[ ] T=

Φn Φr

Λn 0

0 Λr

1–

Φn Φr

T
=

Φn[ ] Λ n[ ] 1– Φn[ ] T Φr[ ] Λ r[ ] 1– Φr[ ] T+=

Gn[ ] Gr[ ]+=

Gn[ ]

Gn[ ] Φ n[ ] Λ n[ ] 1– Φn[ ] T=

Gr[ ]

Gr[ ] Φ r[ ] Λ r[ ] 1– Φr[ ] T=

q{ } qm{ } qo{ }

q{ }
qm

qo
 
 
 
 
 

=
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(10)

In this notation, the columns of  are the measured mode shapes sampled at the sensor

DOF for the measured modes. These are usually referred to simply as the “measured mode

shapes.” Substituting Eq. (10) into Eq. (4) yields an expression for the fully partitioned

flexibility matrix

(11)

As shown by Alvin, et al.16,17 the inverse of the measured flexibility is equal to the Guyan-

reduced (or statically condensed) system stiffness matrix18 with respect to the measured

DOF set 

(12)

where the partitions of  are defined as

(13)

In order to be explicit about the form of the measured flexibility, it is necessary to fur-

ther partition the measured flexibility with respect to the driving point DOF, , and the

response sensor DOF (with no excitation inputs), . So the measured DOF are parti-

tioned as

Φ Φn Φr

Φm

Φo

Φnm
Φrm

Φno
Φro

= = =

Φnm
[ ]

G[ ] Φ[ ] Λ[ ] 1– Φ[ ] T=

Φnm
Φrm

Φno
Φro

Λn 0

0 Λr

1–
Φnm

Φrm

Φno
Φro

T

=

Gmm Gmo

Gmo
T Goo

=

qm{ }

Gmm[ ] 1– Kmm[ ] Kmo[ ] Koo[ ] 1– Kmo[ ] T–=

K[ ]

K[ ]
Kmm Kmo

Kmo
T Koo

=

qd{ }

qs{ }
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(14)

For this research, it will be assumed that each excitation input DOF contains a collocated

response sensor, so that  describes the full set of driving point DOF. The measured

DOF partition of the mode shape matrix is further partitioned as

(15)

and the measured flexibility matrix is partitioned as

(16)

 is a statically complete representation of the structural response between the instru-

mented DOF . Combining Eq. (16) with Eq. (6), the modal and residual contributions

to the measured flexibility matrix can be partitioned as

(17)

As shown in the next section, all of the partitions on the right side of Eq. (17) can be iden-

tified directly from the measured data, except for . 

Estimation of Residual Flexibility from Modal Data

This section demonstrates how the measured FRF matrix  can be partitioned to

show the effects of residual flexibility. If the measurement sensors are accelerometers, then

the inertance (force to acceleration) FRF for response at DOF  due to excitation at DOF 

qm{ }
qd

qs
 
 
 
 
 

=

qd{ }

Φm[ ] Φnm
Φrm

Φnd
Φrd

Φns
Φrs

= =

Gmm[ ] Gdd Gsd
T

Gsd Gss

=

Gmm[ ]

qm{ }

Gdd Gsd
T

Gsd Gss

Gndd
Gnsd

T

Gnsd
Gnss

Grdd
Grsd

T

Grsd
Grss

+=

Grss
[ ]

H ω( )[ ]

i j



Estimation of Reciprocal Residual Flexibility from Experimental Modal Data
Scott W. Doebling, Lee D. Peterson, Kenneth F. Alvin

2/11/97 Page 10 of 37

can be written as a sum over all the structural modes

(18)

where  is the kth mode shape and  is the kth modal frequency. A complete discus-

sion of the estimation and form of the frequency response function can be found in Ewins.19

The source of residual flexibility can be seen by separating the FRF into the compo-

nents below and above the bandwidth of measurement. Suppose that there are  modes

below the measured bandwidth (including rigid-body modes) and  modes in the mea-

sured bandwidth. The FRF of Eq. (18) can then be written as

(19)

For the first term of Eq. (19), representing the modes below the bandwidth, the limit as

 is 

(20)

Since this is a constant term relating force to acceleration, the effect of these low-frequency

modes is analogous to a mass (or inertia) term. It is called “residual mass” by MacNeal9

and “residual inertance” by Admire, et al.13 (As noted in Reference [13], this term does not

exist in Rubin’s nomenclature10 since Rubin retains the rigid body modes in the normal

mode set and assumes that there are no unmeasured flexible modes below the test band-

width.)

For the third term of Eq. (19), writing a MacLaurin series expansion and taking the limit

Hij ω( ) ω2
φk

i φk
j

ωk
2 ω2–

-------------------
k 1=

∞

∑
 
 
 

–=

φk{ } ω k

n1

n2

Hij ω( ) ω2
φk

i φk
j

ωk
2 ω2–

-------------------
k 1=

n1

∑
φk

i φk
j

ωk
2 ω2–

-------------------
k n1 1+=

n1 n+ 2

∑
φk

i φk
j

ωk
2 ω2–

-------------------
k n1 n2 1+ +=

∞

∑+ +
 
 
 

–=

ω ωk»

ω– 2
φk

i φk
j

ωk
2 ω2–

-------------------
k 1=

n1

∑
 
 
 

ωk

ω
------ 0→

lim φk
i φk

j

k 1=

n1

∑=
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as  yields

(21)

The first term on the right side of Eq. (21) (proportional to ) approximates an inverse

stiffness term, thus it is referred to as “residual flexibility.” The second term (proportional

to ) is used in Rubin’s formulation of the component mode model; Rubin10 refers to this

term as “residual inertia,” and Admire, et al.13 refer to it as “residual mass.” This term does

not exist in the formulation of MacNeal.9

As demonstrated by Peterson and Alvin20 and Doebling, et al.21, the time domain state-

space model is often insufficient to accurately reproduce the frequency domain character-

istics of the modal vibration data, particularly near areas of low structural response. One

reason for this is the inability of the time-domain equations to represent the contribution of

the residual flexibility. Therefore, a technique has been developed to use the pole informa-

tion from a variant on the Eigensystem Realization Algorithm22 to estimate the mode

shapes concurrently with the residual flexibility and residual mass terms in the frequency

domain.20 Consequently, the mode shapes and residuals are both obtained such that the

identified model more accurately reproduces the measured data. This technique has been

demonstrated to be more accurate than the traditional method, which uses “residual func-

tions.”19

Only part of the residual flexibility matrix with respect to the instrumented DOF is mea-

surable from the data. Rewriting Eq. (19) yields

ω ωk«

ω– 2
φk

i φk
j

ωk
2 ω2–

-------------------
k n1 n+ 2 1+=

∞

∑
 
 
 

ω
ωk
------ 0→
lim

ω2–
φk

i φk
j

ωk
2

-----------
k n1 n+ 2 1+=

∞

∑
 
 
 

ω4
φk

i φk
j

ωk
4

-----------
k n1 n+ 2 1+=

∞

∑
 
 
 

…–+

=

ω2

ω4
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(22)

where  is the measured partition of residual flexibility, such that

(23)

To see the correspondence between the full residual flexibility matrix  and the

measured residual flexibility , obtain the modal parameterization of the residual flex-

ibility matrix by substituting the expression for  in Eq. (15) into the expression for

 in Eq. (8). This yields the modal expansion for the full residual flexibility matrix

(24)

Expanding Eq. (23), the residual flexibility matrix estimated from the measured FRF ma-

trix can be written in terms of modal partitions as

(25)

It is apparent by comparison of Eq. (24) and Eq. (25) that the measured and parameterized

partitions correspond as

(26)

Thus, the columns of  are the columns of  which correspond to the driving point

DOF, so the estimated residual flexibility matrix  has dimensions . 

Because of the relationship shown in Eq. (26), a driving point response must be ob-

tained at every DOF at which a column of the residual flexibility matrix is desired. To ob-

H ω( ) ω– 2 Φnm
[ ] Λ n[ ] ω2 I[ ]–( ) 1– Φnd

[ ] ω2 Grd
[ ]– Mrd

[ ]+=

Grd
[ ]

Grd
[ ] Φ rm

[ ] Λ r[ ] 1– Φrd
[ ] T=

Gr[ ]

Grd
[ ]

Φrm
[ ]

Gr[ ]

Gr[ ]
Φrd

Λr
1– Φrd

T Φrd
Λr

1– Φrs

T

Φrs
Λr

1– Φrd

T Φrs
Λr

1– Φrs

T

Grdd
Grsd

T

Grsd
Grss

= =

Grd
[ ] Φ rm

[ ] Λ r[ ] 1– Φrd
[ ] T

Φrd

Φrs

Λr[ ] 1– Φrd
[ ] T

Φrd
Λr

1– Φrd

T

Φrs
Λr

1– Φrd

T
= = =

Grd
[ ]

Grdd

Grsd

=

Grd
[ ] Gr[ ]

Grd
[ ] m d×( )
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tain a fully reciprocal flexibility matrix, this means exciting the structure at every DOF in

, such that . This constraint generally adds time and cost to the mea-

surement of the flexibility matrix, due to the sometimes large number of excitations re-

quired. Since the selection of the excitation DOF  determines which columns of 

are known, it will determine, in part, the accuracy of the estimated residual. This excitation

location consideration is discussed in Reference [6].

To relax this strict input placement requirement, it is necessary to somehow compute

the unmeasured partition of the residual flexibility matrix. This is necessary so that the re-

sidual flexibility will be known with respect to the entire measurement DOF set and not just

the driving point DOF. Due to reciprocity, the upper right partition of  is known to be

the transpose of the lower left partition, as shown in Eq. (24). Thus only one partition of the

residual flexibility matrix is unknown: .

General Solution for Unmeasured Partition of Residual Flexibility

A general solution for the unmeasured partition of the residual flexibility matrix 

can be written by parameterizing the residual flexibility matrix in terms of the residual

mode shapes and modal frequencies. As shown in Eq. (24), this partition can be written as

(27)

Using the expression for  from Eq. (24), we can state without loss of generality that 

(28)

where  is some unknown orthonormal transformation such that 

(29)

qm{ } qd{ } qm{ }=

qd{ } Gr[ ]

Gr[ ]

Grss
[ ]

Grss
[ ]

Grss
[ ] Φ rs

[ ] Λ r[ ] 1– Φrs
[ ] T=

Grdd
[ ]

Φrd
[ ] Λ r[ ] 1 2/– Grdd

[ ] 1 2/ 0 T[ ]=

T[ ]

T[ ] T[ ] T
T[ ] T

T[ ] I[ ]= =
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and  is a symbolic Cholesky factorization23 of . Since the number of resid-

ual modes is generally much larger than the number of driving point DOF, the residual

mode shapes and modal frequencies cannot be determined exactly. The orthonormal matrix

 in Eq. (28) represents a transformation to an unknown coordinate basis, so that the de-

composition is general. Then, using Eq. (28) together with the expression for  from

Eq. (24), we have

(30)

where  is an arbitrary matrix of dimension . 

The decompositions of Eq. (28) and Eq. (30) are the most general forms necessary to

describe the possible parameterizations of the corresponding partitions of  as shown

in Eq. (24). Since  is arbitrary, each of these decompositions are general in the sense

that they may be expressed in any coordinate basis. To see that Eq. (28) satisfies Eq. (24),

multiply each side by its own transpose to get

(31)

This reduces to

(32)

which corresponds to the upper left partition of Eq. (24). To see that Eq. (30) satisfies Eq.

(24), multiply Eq. (30) by the transpose of Eq. (28) to get

Grdd
[ ] 1 2/ Grdd

[ ]

T[ ]

Grsd
[ ]

Φrs
[ ] Λ r[ ] 1 2/–

Grsd
[ ] Grdd

[ ] 1 2/( ) T–
X[ ] T[ ]=

X[ ] s r×( )

Gr[ ]

T[ ]

Φrd
[ ] Λ r[ ] 1 2/–( ) Φrd

[ ] Λ r[ ] 1 2/–( )T

Grdd
[ ] 1 2/ 0 T[ ] 

  Grdd
[ ] 1 2/ 0 T[ ] 

  T

=

Φrd
[ ] Λ r[ ] 1– Φrd

[ ] T Grdd
[ ]=
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(33)

This reduces to

(34)

which corresponds to the lower left partition of Eq. (24). The matrix  is arbitrary since

it multiplies the zero partition of Eq. (28), as shown in Eq. (33). Thus, Eq. (28) and Eq. (30)

are expressed in an arbitrary coordinate basis, and satisfy the constraints of Eq. (24).

Substituting Eq. (30) into Eq. (27) yields the general solution for  as

(35)

This general solution for the unmeasured partition of the residual flexibility matrix effec-

tively parameterizes all possible solutions in terms of the positive semidefinite symmetric

matrix . Constraints can be placed on the form of this matrix by applying addi-

tional conditions on the general solution.

Satisfaction of Modal Orthogonality by General Solution

This section shows how the matrix  of Eq. (35) can be chosen such that the condi-

tion of stiffness orthogonality between measured and residual modes is satisfied by the gen-

eral solution of  in the limit that all of the structural DOF are instrumented. Presume

 is the set of eigenmodes for the  system stiffness matrix , normalized as

in Eq. (2). For ,  and  are stiffness-orthogonal, such that

(36)

If  is then partitioned into measured modes  and residual modes , by Eq. (36)

Φrs
[ ] Λ r[ ] 1 2/–( ) Φrd

[ ] Λ r[ ] 1 2/–( )T

Grsd
[ ] Grdd

[ ] 1 2/( ) T–
X[ ] T[ ] 

  Grdd
[ ] 1 2/ 0 T[ ] 

  T

=

Φrs
[ ] Λ r[ ] 1– Φrd

[ ] T Grsd
[ ]=

X[ ]

Grss
[ ]

Grss
[ ] Grsd

[ ] Grdd
[ ] 1– Grsd

[ ] T X[ ] X[ ] T
+=

X[ ] X[ ] T

X[ ]

Grss
[ ]

Φ[ ] N N×( ) K[ ]

i j≠ Φi{ } Φ j{ }

Φi{ } T K[ ] Φ j{ } 0=

Φ[ ] Φ n[ ] Φ r[ ]
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these modes must be stiffness-orthogonal. This condition can be written

(37)

Pre-multiplying Eq. (37) by  and post-multiplying by  yields the

condition

(38)

where  and  are the full  modal and residual flexibility matrices. Thus,

Eq. (38) defines the stiffness orthogonality condition between the modal and residual flex-

ibility matrices.

Partitioning  into columns corresponding to the driving point DOF, , and non-

driving point DOF, , yields

(39)

where, for the purposes of this derivation, all DOF are assumed to be instrumented, i.e.,

 contains all  DOF, and  is null. Substituting Eq. (24) and Eq. (39) into Eq.

(38) yields

(40)

The equations in the left and right partitions can be expanded to get

(41)

(42)

Assuming  is invertible, which is true when the number of residual modes is greater

than the number of driving point DOF, Eq. (41) can be solved for  to get

Φn[ ] T K[ ] Φ r[ ] 0=

Φn[ ] Λ n[ ] 1– Λr[ ] 1– Φr[ ] T

Gn[ ] K[ ] Gr[ ] 0=

Gn[ ] Gr[ ] N N×( )

K[ ] qd{ }

qs{ }

K[ ] Kd Ks
=

qm{ } N qo{ }

Gn[ ] Kd Ks

Grdd
Grsd

T

Grsd
Grss

0=

Gn[ ] Kd[ ] Grdd
[ ] Gn[ ] Ks[ ] Grsd

[ ]+ 0=

Gn[ ] Kd[ ] Grsd
[ ] T Gn[ ] Ks[ ] Grss

[ ]+ 0=

Grdd
[ ]

Gn[ ] Kd[ ]
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(43)

Substituting Eq. (43) into Eq. (42) yields

(44)

Substituting the general solution for  from Eq. (35) into Eq. (44) and reducing yields

(45)

Thus, the contribution  to the general solution Eq. (35) must lie in the right null

space of . Unfortunately, since  is itself unknown, this condition cannot be

used to directly construct . Also, this condition is strictly true only when the full

structural DOF set is measured.

As described in Reference [6], the limited set of modal response measurements do not

allow computation of the full stiffness matrix , but only the Guyan-reduced stiffness

with respect to the measured DOF, . Since it is desirable to express the orthogonality

condition purely in terms of measurable quantities, the orthogonality relation of Eq. (45)

can be reduced to the measurement DOF,  to obtain6

(46)

where  are the columns of the statically reduced stiffness matrix corresponding to the

non-excited DOF . This reduced form of the orthogonality constraint is important, be-

cause it corresponds to the measured partitions of the modal and residual flexibility. Thus

Eq. (46) is the form of the orthogonality constraint which is applicable to the experimen-

tally measured quantities. Because of the assumption of static condensation, however, Eq.

(46) is only satisfied to the extent that the modes are well-preserved by the static conden-

sation. This condition can sometimes be satisfied when the measured modes have low fre-

Gn[ ] Kd[ ] Gn[ ]– Ks[ ] Grsd
[ ] Grdd

[ ] 1–=

Gn[ ] Ks[ ] Grss
[ ] Gn[ ] Ks[ ] Grsd

[ ] Grdd
[ ] 1– Grsd

[ ] T=

Grss
[ ]

Gn[ ] Ks[ ] X[ ] X[ ] T 0=

X[ ] X[ ] T

Gn[ ] Ks[ ] Ks[ ]

X[ ] X[ ] T

K[ ]

K[ ]

qm{ }

Gn[ ] Ks[ ] X[ ] X[ ] T 0=

Ks[ ]

qs{ }
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quency, and when all DOF of significant mass excited by that mode are instrumented.

Rank-Deficient Solution for Unmeasured Partition

It is possible to derive a solution for the unmeasured partition of the residual flexibility

 without making further assumptions about the form of the full structural stiffness

matrix by simply choosing  in Eq. (35). This produces a rank-deficient solution

for  of the form

(47)

The advantage of this solution is that it does not require any additional information or as-

sumptions about the structure beyond the measured partitions of the residual flexibility ma-

trix. The disadvantage is that since no information is added, no additional information is

available to define the residual modal subspace. Thus the residual flexibility matrix 

has the same rank as , which is typically the number of driving points d. Also, since

 is always positive semidefinite, Eq. (47) can be considered a lower bound on the

true value of .

The rank-deficient estimate of  computed in  allows the definition of a

rank-deficient solution for the flexibility matrix, , which can be computed as

(48)

where , ,  and  are identified from the measured FRF, and  is

computed using Eq. (47). Thus, an estimate of the measured flexibility matrix which in-

cludes the residual flexibility and requires only the measured data is obtained.

Grss
[ ]

X[ ] 0=

Grss
[ ]

Grss

o[ ] Grsd
[ ] Grdd

[ ] 1– Grsd
[ ] T=

Gr[ ]

Grd
[ ]

X[ ] X[ ] T

Grss
[ ]

Grss
[ ] Grss

o[ ]

Go[ ]

Go[ ] Φ n[ ] Λ n[ ] 1– Φn[ ] T
Grdd

Grsd

T

Grsd
Grss

o
+=

Φn[ ] Λ n[ ] Grdd
[ ] Grsd
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In the limit that the driving points span the space of the residual modes, Eq. (47) is the

exact solution for . This can be proven by substituting the modal parameterizations

of  and  from Eq. (24) into Eq. (47) to get

(49)

When the number and location of the driving points is sufficient to span the residual modal

subspace,  is invertible, so Eq. (49) reduces to

(50)

which is equivalent to the exact modal parameterization of  shown in Eq. (27).

Numerical Examples

Example 1: Improved Estimation of Flexibility for 2-DOF Cantilevered Beam

This numerical example demonstrates how the rank-deficient residual flexibility solu-

tion described by Eq. (47) and Eq. (48) can be used to estimate the unmeasured partition of

the residual flexibility matrix. The application of this flexibility estimation technique is

demonstrated for the cantilevered beam model and properties shown in Figure 1. The

modes for this example were generated using the continuous solution to the fourth-order

boundary value problem for a Bernoulli-Euler beam.24 The modes were mass-normalized

numerically.

Consider the 2-DOF model with an input at the vertical tip DOF, so that the DOF sets

are defined as

(51)

Grss
[ ]

Grdd
[ ] Grsd

[ ]

Grss

o[ ] Φ rs
[ ] Λ r[ ] 1– Φrd

[ ] T( ) Φrd
[ ] Λ r[ ] 1– Φrd

[ ] T( ) 1– Φrd
[ ] Λ r[ ] 1– Φrs

[ ] T( )=

Φrd
[ ]

Grss

o[ ] Φ rs
[ ] Λ r[ ] 1– Φrs

[ ] T=

Grss
[ ]
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θ1
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The stiffness matrix for this structure is25

(52)

so that the exact flexibility matrix is

(53)

For this example, the full residual flexibility matrix is computed by subtracting the mea-

sured flexibility of 1 bending mode from the full flexibility matrix. This procedure yields

(54)

Since the excitation is at the first DOF, the measured partition of the residual flexibility

 is the first column of , i.e.

(55)

Partitioning the matrix in Eq. (55) further yields the basic partitions of the residual flexibil-

ity:

(56)

Then the rank-deficient solution , can be found by evaluating Eq. (47) to get

(57)

and then evaluating Eq. (48) to get

(58)

K[ ] 2158.2 1618.7

1618.7 1618.7

N
m
---- 

 =

G[ ] 1.85 1.85–

1.85– 2.47

3–×10
m
N
---- 

 =

Gr[ ] 5.45 20.2–

20.2– 95.6
10 5–× m

N
---- 

 =

Grd
[ ] Gr[ ]

Grd
[ ] 5.45

20.2–
10-5×=

Grdd
[ ] 5.45

5–×10=

Grsd
[ ] 20.2–

5–×10=

Go[ ]

Grss

o[ ] Grsd
[ ] Grdd

[ ] 1– Grsd
[ ] T 74.9

5–×10= =
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10 3–×=
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For this example, the error is expressed in terms of the percent error in the 2-Norm of the

flexibility matrices,  and  respectively. So the norm error in

the modal flexibility  is 25% and the norm error in the rank-deficient residual solution

 is 5%. Thus, even with only one column of the residual flexibility matrix known

(from the one test input), the rank-deficient flexibility solution reduces the flexibility shape

error by a factor of 5 versus the modal flexibility.

Example 2: Improved Component Mode Synthesis Modeling

This example demonstrates how the rank-deficient residual flexibility solution can be

used to improve the combined component mode model of two free-free beams in the case

where measured residual flexibility values are not available at all interface DOF. Consider

two free-free beams in a plane, as shown in Figure 2, which will be joined using Rubin’s

free-interface CMS procedure.10 The interface DOF are defined to be  and , and the

measured mode set for each substructure consists of two rigid body modes and five flexible

modes. Suppose that the substructures are only excited at DOF , so that only one column

of the  residual flexibility matrix is known. The following methods for computing

the unmeasured components of the residual flexibility matrix for the implementation of Ru-

bin’s method will be compared:

1. Use diagonals of measured partition  known (in this case ), augmented

with zeros to estimate . This method will be called Rubin Option 1.

2. Full measured partition  known (in this case , plus 1 reciprocal off-diag-

onal term), augmented with zeros to estimate . This method will be referred to as

Rubin Option 2.

Gn G– G⁄ Go G– G⁄

Gn[ ]

Go[ ]

w θ

w

2 2×( )

Grd
[ ] 1 1×( )

Gr[ ]

Grd
[ ] 2 1×( )

Gr[ ]
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3. Full measured partition  known, rank deficient solution used to compute the

rank-deficient residual flexibility matrix . This method will be referred to as the

Rand-Deficient Solution method.

It should be noted that the residual flexibility matrices computed using these techniques are

all generally rank-deficient, so that the practical implementation requires using the higher

frequency measured modes to complete the rank. This requirement is a consequence of the

basic formulation of Rubin’s method.

The modal frequencies obtained using each of the residual flexibility estimation meth-

ods are listed in Table 1, and are compared to the “exact” frequencies from a continuous-

beam solution and to the frequencies obtained using Rubin’s method with fully known re-

siduals. It is clear from inspection of Table 1 that the Rank-Deficient Solution, which uses

the method derived in this paper, provides results which are superior to the other two meth-

ods. Therefore it can be stated that the rank-deficient residual flexibility solution can im-

prove the CMS results using Rubin’s method when the residuals are not known at each

interface DOF. (It is also interesting to note that for Rubin Options 1 and 2, the modes seem

Table 1.  Comparison of Frequencies from Rubin Model using Various Estimates of 
Residual Flexibility

Exact 
(Hz)

Full Residual 
(Hz)

Rubin Option 1
(Hz)

Rubin Option 2
(Hz)

Rank-Deficient 
Solution
(Hz)

7.36 7.37 8.07 8.07 7.42

20.31 20.32 20.32 20.32 20.32

39.82 39.85 43.22 43.21 40.07

65.82 65.98 65.99 65.99 65.99

98.33 98.83 108.7 108.4 99.44

137.3 138.6 138.7 138.7 138.7

182.8 185.7 209.1 206.8 187.2

Grd
[ ]

Gr
o[ ]
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to alternate between being well correlated and being poorly correlated. The modes which

are not well correlated are those modes which have relatively large rotations and relatively

small displacements at the end points of the beams, and therefore are not well captured in

the residual since the residual flexibility is not measured at the rotational DOF.)

Experimental Applications

A series of modal vibration tests was performed on a simple cantilevered beam struc-

ture to study the measurement of flexibility when the experiment has incomplete measure-

ment reciprocity. The test setup for this structure is shown in the photo of Figure 3. A

schematic of the test structure is shown in Figure 4, including the instrumentation and test

input location. To ensure that the global displacements and rotations could be resolved ac-

curately, the offsets of the sensors from the global nodes were carefully measured. The ac-

curate measurement of the offsets is so important that the measurements were made to the

exact location of the sensing element within the sensor housing. The applied force level was

measured using a piezoelectric force transducer integrated into the tip of the hammer.

The test parameters are summarized in Table 2. The test procedure consisted of impact-

Table 2.  Data Acquisition Parameters for 
Cantilevered Beam Experiment 

Parameter Name Parameter Value

Sample Frequency 500 Hz

Window Length 32.768 sec

Number of Samples 16,384

Test Band of Interest 3 - 180 Hz

Number of Averages 20

Number of Responses 19

Number of Excitations 1

Instrumentation Type Accelerometers

Excitation Type Impact Hammer
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ing the tip of the beam vertically with the modal hammer and forming the spectra between

the excitation force signal and each acceleration response signal. This excitation was ap-

plied repeatedly, and the resulting spectra were averaged and normalized by the averaged

input power spectrum to form the measured FRF matrix. The modal frequencies, mode

shapes, and residual flexibility were extracted from the measured FRF data using the pre-

viously described techniques. The identified frequencies, damping ratios, and descriptions

of the mode shapes are presented in Table 3.

The measured mode shapes and measured residual flexibility were transformed into the

coordinates of the translation and rotation of the beam tip, equivalent to the DOF shown in

Figure 1. The modal flexibility and the rank-deficient residual flexibility solution were

computed using one measured mode, then two measured modes, etc., and the correspond-

ing measured residual flexibility matrices. To see the effects of residual flexibility on the

overall magnitude of the flexibility matrix, consider the flexibility convergence plot shown

in Figure 5. This plot shows the norm of the modal flexibility matrix, , and the norm

of the rank-deficient residual flexibility solution, , versus the number of modes kept

in the identified modal set. This plot demonstrates the convergence in overall flexibility

magnitude obtained by using the rank-deficient solution for the residual flexibility. The im-

provement is about 6% for 1 measured mode, and decreases steadily with the number of

Table 3.  Identified Modes for Cantilevered Beam 
Experiment 

Frequency 
(Hz)

Damping 
Ratio (%) Mode Description

4.34 0.058 First Bending

27.06 0.508 Second Bending

77.55 0.309 Third Bending

149.47 0.378 Fourth Bending

Gn[ ]

Go[ ]
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measured modes, as expected. It should be noted that while the residual flexibility affects

the norm of the flexibility matrix significantly for one identified mode, and slightly for two,

any identification which captures at least three bending modes will have an insignificant

contribution from the residual flexibility.

It is well known in the field of experimental modal analysis that residual flexibility co-

efficients are difficult to measure accurately due to their small magnitude. The measured

residual flexibility values for the cantilevered beam will therefore be compared to the ana-

lytically predicted values to estimate the accuracy of the measurements. The residual flex-

ibility matrix at the tip displacement and rotation DOF computed using the rank-deficient

residual flexibility solution is

(59)

Using the idealized model of the cantilevered beam structure (as shown in Figure 1), the

full static flexibility matrix is given by

(60)

and the corresponding residual flexibility matrix is

(61)

Comparing Eq. (61) and Eq. (59), it is seen that the diagonal terms are off by factors of three

and two, respectively, but that the off-diagonal terms are only off by about 10%. The dis-

crepancies in the diagonal terms demonstrates the inherent difficulty in estimating the re-

sidual flexibility from test data. It is not clear, however, that the model of this structure

Gr
o[ ] 0.0004 0.0134–

0.0134– 0.5561

3–×10=

G[ ] 1.8 1.8–

1.8– 2.4

3–×10=

Gr[ ] 0.0013 0.0149–

0.0149– 0.2493

3–×10=
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adequately captures the true nature of the boundary conditions, so that the comparison to

the analytical prediction should not be used as grounds for discounting the experimental re-

sults. 

The most important thing to note is that the terms estimated using the rank-deficient re-

sidual technique will be limited in accuracy by the accuracy of the measured residuals. In

fact, in this comparison, the second diagonal term of , which is the term estimated by

the rank-deficient residual flexibility technique, is in fact more accurate than the first diag-

onal term, which is estimated directly from the measured data. To demonstrate the accuracy

of the rank-deficient solution independent of the measurement error, consider the value of

 which would be obtained using the measured partition of the analytical residual flex-

ibility from Eq. (61). This value is 0.1708, as compared to the exact value of 0.2493. So in

the case of perfect measurements, the rank-deficient solution would under-predict the cor-

rect value by about 30%, but does provide the expected lower bound on the value of .

Experience has demonstrated that the level of significance of the residual flexibility

varies a great deal depending upon the structure and the boundary conditions. For example,

the flexibility convergence plot for a test performed on a planar idealization of an automo-

bile engine cradle is shown in Figure 6. For this data, the difference in the norms of the

modal flexibility and rank-deficient flexibility solution values is nearly 100% for 1 mode,

and decreases nearly monotonically to almost zero for 12 modes. However, it should be no-

ticed that while the significance of the residual flexibility is much higher than for the can-

tilevered beam, it still tends to decrease as the number of measured modes increases, since

the magnitude of the norm of the modal flexibility also increases.

Gr[ ]

Grss

o[ ]

Grss
[ ]



Estimation of Reciprocal Residual Flexibility from Experimental Modal Data
Scott W. Doebling, Lee D. Peterson, Kenneth F. Alvin

2/11/97 Page 27 of 37

Conclusion

A method for estimating the fully reciprocal residual flexibility matrix for experimental

configurations which have incomplete reciprocity has been presented. A general solution

was derived, which was composed of a contribution from the measured partition of the re-

sidual flexibility and an unknown positive semidefinite matrix. The general solution was

shown to satisfy modal orthogonality when the unknown matrix lied in the nullspace of a

partition of the global stiffness matrix, in the limit that all structural DOF were instrument-

ed. The general solution was also shown to satisfy modal orthogonality with a reduced set

of instrumented points when the measured modes were approximately preserved by static

condensation. A rank-deficient solution was presented which can be computed using only

the measured partitions of the residual flexibility matrix, and which is a lower bound on the

full-rank residual flexibility matrix.

Numerical and experimental results were presented that demonstrated that while the

significance of the contribution of residual flexibility is highly problem dependent, the

rank-deficient residual flexibility improved the convergence of the norm of the flexibility

matrix for all of the problems considered. These results demonstrate that the use of the

rank-deficient flexibility solution should improve the results of any damage detection,

model refinement, or CMS algorithm which uses the measured flexibility or residual flex-

ibility matrices.
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Figure 1: Two-DOF Cantilevered Beam Model
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Figure 2: Two Free-Free Beam Components for CMS Example
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Figure 3: Cantilevered Beam Test Setup



Estimation of Reciprocal Residual Flexibility from Experimental Modal Data
Scott W. Doebling, Lee D. Peterson, Kenneth F. Alvin

2/11/97 Page 34 of 37

Figure 4: Schematic of Cantilevered Beam Test Structure
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Figure 5: Flexibility Convergence Plot for Cantilevered Beam
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Figure 6: Flexibility Convergence Plot for Planar Engine Cradle Structure
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